Natural Gas Plug-In Hybrid Class 8 Truck Development

NGVTF

James S. Burns, Ph.D. 2/22/2018

Development Funding Path

- CEC PIR-13-012 Ended Q3 2017
 - Demonstration of Natural Gas Plug-in Hybrid Class 8 Trucks (NGPH-8)
- SCAQMD Contract No. 16046 Ends Q2 2018
 - Develop & Demonstrate Two Class 8 CNG
 Plug-In Hybrid Electric Drayage Trucks (ZECT)
- CEC proposed awardee under GFO-17-503
 - Demonstration of a CNG Hybrid-Electric Super-Truck (CHEST)

Technical Advisory Committee (TAC) Members

- Roger Galloway Westport
- Michael Lee Southern California Gas
- Kent Johnson UC Riverside
- Vic La Rosa Total Transportation Solutions
- Jon Coleman Ford Motor Company

otal Transportation Services, Inc.

mpra Energy[®] company

Plugin Range-extended CNG Hybrid Basics

- Serial hybrid combines TransPower's proven electric powertrain with a "smart" generator APU
- This APU incorporates a 3.7L Ford SI NG engine and JJE/EPC electric power systems

Electruck [™] with APU Range-extender

Objectives for these designs

- Effective range extension
 - 135-250 mile range > Bakersfield to Long Beach
 - Vehicle weight "neutral" design
 - Significant fuel cost savings
- Program goals
 - Fuel economy in g/bhp-hr at those conditions equal or better than that of larger CNG truck prime mover engines
 - Heavy Duty FTP cycle compliant emissions at those conditions
 - Longevity sufficient for demonstration period
- Energy and power requirements for APU
 - 50-70 engine shaft hp average over 8 hours
 - 100-200 shaft hp peak for 5 minute bursts

Challenge: Engine Choice and Availability

- All 3.7L NG-ready Ford engines are built with the same variable valve, and port-injected fuel system.
- <u>Automotive-Trim (AT):</u> Original Ford effort to supply 3.7L from dual-fuel F-150 production – these had a hard-to-procure controller with closed software – no help forthcoming
- <u>Stationary-Trim (ST):</u> has an added manifold injector and unwired VVT system – limited to 2900 RPM – available and stand alone w/controller

Engine Strategy

- Acquire ST engines from Powertech, run one as-is in the CCAT test truck to establish a baseline
- Develop a CNG test capability –a complete dynamometer facility – to author new engine controls for the AT (Seq. multi-port, VVT) engine.
- Procure additional ST engines and build APUs for the SCAQMD trucks, then upgrade the ST engines to operate as AT to reach the higher peak power goals and reduce fuel consumption and emissions

APU design details

3.7L Engine

EPC Inverter

APU dry weight: ~1400 lbs CNG storage system dry weight: ~450 lbs Battery weight reduction: ~2300 lbs

Truck System Simulation Results

Parameters Sou to 60 7 7 30 Speece any 20 0 2 2 0 Display Mode Response Loss 1 0 Response Loss 1 0 Response Loss 1 0 Display Mode Response Loss 1 0 Display Mode Response Display Mode Response Disp	20130N16210V2J00NGAPU	Alter better delta to an							
0.06+0 0.0	Cycle/ Condition	Avg. Speed (MPH)	Trip Range (miles)	Operating Economy (kWh/mi)	Time to goal (hrs)	APU power (kW)	Trip energy (kWh)	APU energy (kWh)	CNG req'd (GGE)
	Drayage	10	75	2.7	7.50	15	203	111	13.2
	Drayage 2 shifts	10	150	2.7	15.00	21	405	313	37.5
	Freeway	55	135	2.8	2.45	117	378	286	34.2
	Interstate	65	135	3.3	2.08	170	446	354	42.3

- Simulated system efficiency to verify vehicle range using the stacked HD FTP drive cycle
- Used baseline control rules to explore operational impacts of ESS and SOC limits on second by second performance

• Sized system fuel requirements, estimated ESS performance impacts of this design, and explored limited load following rules

Controls Development

- Constant speed, always-on mode developed.
 Majority of testing to date has been in this mode.
- Voltage support during bridge pulls
 - Peak power set to increase with auto-trim engine and TransPower controls.
- Low-speed "off" mode presently it's low idle mode
 Geo-fencing add-on device has been developed.
- Ford ECM unavailable in dyno-calibrated version
 - Significant investment in dynamometer testing has met continuous power goals and can proceeded to vehicle test.

- Baseline drayage load leveling
 - 2.6kWh/mi for 8 hr drayage shift
 - Goal of 100 mile range extension (~150 miles total) min
 32.5kW over 8hrs or 62kW ~50% duty cycle
- Extended highway operation
 - 3.5kWh/mi 40% more than typical drayage
 - This is roughly 0.7 hp/mile per 8 hour drayage shift
 - At 25% thermal efficiency, this is 2x23GGE tanks
- Bridge climb (<5min)
 - Smaller battery design requires 80-120kW from APU
 - ST Engine output is capped in firmware to 62kW. AT engine should reach the 110-120kW peak output

CCAT catenary program test truck with APU

Lessons Learned

- Assembly/ Layout
- Noise Control
- Air flow and Cooling
- Control Methods
- Fuel consumption

Operational and deployed at the E-Highway test site

Auto-trim Engine Dynamometer Test Cell

Instrumentation

- CNG flow meters
- O2 sensors
- Exhaust temps
- Std. engine sensors

Safety

- Remote SCADA
- Leak and fire detection
- AV900 ESS simulator
- External CNG storage

SCAQMD-funded CNG hybrid range-extending trucks

- Delayed deployment due in part to a battery cell failure and added diligence in testing and requalifying KAM cell products.
- These trucks will deploy with the ST engine and then be updates in the field to the AT operation with addition of TransPower
 ECU and harness, intake changes, and insertion of port injectors.

View from the left rear

APU and Vehicle Testing Results

Stationary-trim APU Fuel consumption:

RPM	Load (%)	APU Output	Engine	Minutes	kWh/kg	Eff.			
		(kW)	Temp. (.C)					Conversion factors	
1000	0	0	16	14.13	0	0		2.90	kg/DGE
1000	0	0	90	20.25	0	0		0.746	kwh/hp-h
1400	75	22.4	89	2.48	1.85	0.14		0.875	DGE/kWh
1400	75	22.5	95	3.58	2.69	0.20		0.653	DGE/hp-h
2850	90	59	98	1.68	3.31	0.25		Superior (gross) calorific	
2900	100	62	N/A	N/A	N/A	N/A		14.61	kWh/kg
CNG die sel gallon equivalent (DGE). – 1 DGE = 6.384 pounds (2.896 kg) of CNG or									
CNG dies	CNG diesel liter equivalent (DLE). – 1 DLE = 0.765 kilograms (1.687 pounds) of CNG.								

Stationary-trim on-road testing traces (typical):

ST-based APU emissions measured w/ UCR portable equipment

	Т	est Condition	1	Emission Rates g/KWhr				
Test Index	rpm	%Torque	power kw	N	хс	PN	Л	
#		Nominal	Measured	AVE	STD	AVE	STD	
3	1400	42%	12	4.93	0.6	0.000	0.000	
4	1400	75%	24	13.9	1.6	0.001	0.000	
5	2100	65%	25	12.8	0.5	0.002	0.001	
6	2400	65%	31	10.6	0.3	0.001	0.000	
8	2400	85%	41	0.2	0.2	0.005	0.003	
16	2900	100%	62	8.4	3.6	0.004	0.002	
17	2900	75%	52.7	2.9	0.6	0.000	0.000	
18	2900	66%	42.7	0.9	0.7	0.004	0.006	
19	2900	100%	62	12.4	3.4	0.003	0.002	
20	2900	80%	54	6.9	0.4	0.001	0.000	
21	2900	70%	45	5.1	1.7	0.001	0.000	
22	2900	50%	32	0.2	0.2	0.001	0.000	
23	1400	67%	20	12.4	1.1	0.000	0.000	
24	1400	50%	15	9.3	1.0	0.000	0.000	
26	2600	100%	55.7	3.9	2.1	0.009	0.003	
27	2600	90%	51.5	3.8	1.3	0.001	0.001	
28	2000	60%	25.6	10.8	4.3	0.000	0.000	
29	2900	25%	15.7	4.0	1.0	0.002	0.001	
30	2900	10%	4.4	2.9	1.4	0.002	0.001	
31	2900	25%	15.7	4.1	1.2	0.002	0.001	
32	2900	10%	4.4	2.0	0.7	0.001	0.000	

Emission targets (HD FTP):

- 0.01 g/bhp-hr NOx
- 0.01 g/bhp-hr PM
- 0.14 g/bhp-hr HC
- 15.5 g/bhp-hr CO

Observations:

- NOx is high in the ST
- AT should improve
- PM is of course low
- Full weighted duty cycle not used in calculations
- UCR equipment did not measure HC and CO

Meritor / TransPower Partnership @ November 20th, 2017

Both parties bring valuable competencies to this relationship:

- Software / controls
- Battery integration & controls
- On road experience
- Research and development
- Commercial vehicle system integration

- 100+ year Brand
- Commercial relationships
- Production manufacturing
- Global infrastructure
- Sales, service, and aftermarket networks
- Capital and resources

- Working ST system operating on CCAT truck now.
- ST efficiency predictions were verified.
- ST emissions measured as baseline
- First SCAQMD truck integrated- awaiting calib.
- AT engine software calibrated to 4000RPM
- AT engine meets average power requirement
- AT emissions tuning slated for April at UCR
- AT engine software will evolve during deployment
- Fuel cost-per-mile and emission reduction benefit spreadsheet tool developed for ST engine

Fuel Savings Benefit Predictions

100	mile trip target	Conditi	on	fraction	kWh/kg
2.3	kWh/mi Low speed	1	idle	0.1	0
3.5	kWh/mi High speed	2	22 kW	0.1	2.69
155	kWh ESS nomnal	3	60 kW	0.8	3.31
0.80	SOC avail. fraction			avg	2.92
53.9	mile range electric	Assume	ed		
1.00	starting SOC	Diesel MPG	5	kg CNG req	44.8
0.8	ESS DOD max.	Fuel/units	Cost/unit	scf/DGE	144
43.1	Electric miles driven	Diesel/Usgal	\$ 4.00	scf/kg	49.4
56.9	CNG miles	CNG/DGE	\$ 2.00	scf req	2215
131	kWh CNG required	Electricty/kWh	\$ 0.12	DGE required	15.4

Operating modes

- Idle (not "off")
- Low charge-sustaining
- High charge-sustaining
- Peak (hill climb)

Observations

- Knee at AER limit
- Adjustable SOC limits
- Low-speed drayage significant savings

Changing Landscape

- AESC batteries
 - Lower impedanceLower cost
- Meritor partnership
 - E-axle
 - Investment
 - Midwifery
- New missions
 - Medium range
 - Long haul
- New competitors

Better Batteries

- Modular design for packs with 44kWh increments
- High energy density ~50% more than LFP system
- US sourced, high quality Li NMC pouch cell
- BMS with CANBUS and 200 mA of balancing
- Air cooled with optional water/glycol and refrigerant Battery heating and cooling options
- Each module has fusing and contactor control

Cell chemistry and type	Li-NMC, prismatic pouch
Cooling type	Air. Opt. Water/Glycol and Refrig.
Pack dimension (D, W, H) mm	675 x 500 x 550 (Width along frame)
Pack mass kg	360
IP rating	IP 67
Vehicle mounting method	Frame side mounting w/ spreaders
Capacity nom./usable, kWh	Per pack - 44, 37
Nominal voltage VDC	400
SOC range %	10%-95%
Max contiin. discharge current	330 @45 ℃
Pulse discharge current A	550 @ 27 °C
Max. charge current A	110,55 recommended
Min charge time Hour	1 hour, 2 recommended
Battery control	Volt/Temp with current derate
Operation/Store temp limits C	(-25 ~ 60 ℃)/(-40 ~ 70 ℃)

NACV show in October 2017

Fully integrated electric motor saves cost and weight and frees packaging space b/w frame rails

PM motor technology tailored for CV duty cycles is extremely power dense and efficient

2-speed automated shifting enables smaller, lighter motor and higher system efficiency

- Fits existing MTOR axle hsgs for easy vehicle integration
- 250 kW Peak power (3 ratings 150 / 180 / 200 kW Cont.) in the same package for appl. Flexibility.
- Prototypes available in mid-2018

Q and A Period

